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The game problem of bringing controlled motions in a conflict situation onto a given
set is considered for systems with aftereffect, The problem is investigated on the basis
of the notion of extremal strategies previously introduced [1] for systems described by
ordinary differential equations, The contents of the present study are related to those

of [1-6],

1. Let us consider a system with aftereffect of the form

dr (1) [ dt — Jy (& 2 (5), w)  fo (8, 2, (s), v) (1.1)

;

Here g is an rn-dimensional phase vector; the r,-dimensional vector © and the rs-
dimensional vector ¢ are the controlling forces at the disposal of the first and second
players, respectively, These forces are subject to the restrictions

uwe P, veE Q (1.2)
where /? and () are compacts; the functionals f; (f, x (s), y) are defined on the pro-
ducts [y, ta] x Cpz0 x Y (Y; = P, Y, = (), are continuous over all the argu-
ments and satisfy the Lipschitz conditions in the functions z (s)

1t 21 (), y) — it 22 (), W< Lfa(s) —a(s)lf- (1.3)

Here and below ('[_ ¢ is the space of continuous n-dimensional functions z (s),
—T<Cs< 0, 1= const >0, L= consl >0

izl =(z2- ...+ 2,%)" is the norm in the Euclidean space /7,,;
Lz (s) |- == max, |z (s)| is the normin C_. g ;

the segment z, (s) = x (¢ -+ s) of the trajectory of system (1.1) is called the state of
the system at the instant 7 (and is sometimes also denoted by the symbol z; (-)); the
interval [fa, fs] contains all the time intervals over which the behavior of system (1,1)
is considered,

The symbols and notations which appear below without references and explanations
are all defined in [6], The guidance problem to be considered is as follows,

Some closed set M is defined in the phase space of system (1.1). We are also given
the initial position of the game, namely

Po = {to, Zo (5)} (L & [tas tp), 2o () E C1—=, q))

and the instant O &= (,, sl

We are to construct the first-player strategy I/ which guarantees encounter of the
motions Z %, Py, U, Vrl of system (1.1) with the target [}/ at the given instant (by
the given instant) . Here the motion x [¢, py, U, V] is assumed to be (see [6]) an
n~-dimensional vector function of the argument £ which is constructed in the following
way,
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Differential guidance game for systems with aftereffect 93

We take some covering A of the interval [fq, fg] by the half-intervals [Ti, Tity)
(To = fa, i = 0, 1, ...) with the covering diameter § = sup; (Tiy1 — T;) > O.

we denote by z [£, py, U, Vrla the absolutely continuous (¢2>%o) function z [t]a
which satisfies the condition z [£, + sla = z, (s) and satisfies the contingency

fx_yt]_A'Efx(tyxz[S]A»u[t])+F2(t,x,[s]A) (1.4)

ultl=u [Ti] eU (riv 55*.1. [S]A)’ T; <t <Ti+1

for almost all ¢ € [¢,, tg] .
The sets [J (¢, z (s)) define the strategy U/

Fy(p) = Fy (tz (s)) = ¢ U {fult,z (5),7) | v € O}

and the symbol _c—O{z} denotes the closure of the convex shell of the set of vectors z,
Then, by definition, z [¢, p,, U, Vgl is a continuous function which has the
following property : there exists a sequence of coverings {A;} with {6;} — O such that
some sequence of functions {z [¢, py, U, Vrlaj} converges in Cr, g 0 (£, Pos

U, Vrl.

We note that by virtue of the equiboundedness and equicontinuity of the set of solu-
tions of the equation dz (1)

g " E Ptz () + Fo(l, 2, (5)

(z(to+8) = 20 (s); Fy(p) = F1 (8, 2 (5)) =c0{f; (t,  (s), u) [u € P}; to < t < ¢) the
set of motions {z [¢, py, U, Vpl} defined in this way is nonempty).

Let us refine our statement of the problem. Let p (x, M) be the distance in E, from
the point z to the set M.

Definition 1,1. For a given initial game position p, the strategy [/ guarantees
encounter of the motions z [t] = x [#, p,, U, Vgl of system (1.1) with the target
M at the instant ¢ (by the instant ©) if

p(z 8], M) =0 (ming, < <tq p (2 [E], M) = 0) (1.5)

where z [f] is any motion z [¢, py, U, Vrl.
The sufficient conditions of solvability of the guidance problem are given and the
structure of the required strategy U is investigated below.

2, Leteach ¢t & [ta, tg] be associated with a nonempty set W, = W, {z ()} =
< Cl[—, o]- We take a specific number § & [—7, 0] and call the set
Wi = {z (§) | z (s) & Wy}
the E-section of the set W,. The sequence {z(® (E)}, where z(® (s) & Ci—=,01 will
be called the §-section of the sequence {x(") (s)}

A t
T re@ Wy =itz —y Ok e W) (1)
let {y} = {«® (s)} be some sequence which minimizes (2.1) for a given
z (s} -

Let us construct the set of partial limits of the sequence {z(® (0)} which is the
0-section of the sequence {z) (s)}.
we denote by Z (z (0)) the collection of elements of this set which are closest to
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z(0)in I,,.

Definition 2,1, We define strategies extremal to the system of sets W', ¢, -
< t =Z 1), as those strategies {J°, V' which are defined by the sets /" (¢, 2 {s)),
V* (t, z (s)). respectively, constructed according to the rule

U (8, x(s)) = {ud(z = 0 (W)L (L, o ( ),» 4)
max (z — £ () /1 (1, x (8), 1)} (2= Py (2.

Vit a(9) - e 15— 2 (0) /2( vz (s), 2e)
Smax (z - 2 (U)) /‘3 l\t x(s), )} &)

[
[
N

for at least one = & 4 (& (V).
Theorem 2,1. Leta system of strongly u-stable sets ', ¢, <C ¢ <C ) (see [6])
be specified in the interval [£,, (], and let M > Vg, If the initial game position
Po = {lg> Zo (8)} satisfies the condition r (x4, Wy,), = 0, then the first-player strategy
U* extremal to the system of sets W, guarantees encounter of the motions & [
= 2 {t, py, U’ V] of system (1.1) with the target M at the instant ).
This theorem follows from the following lemma, which is also of independert interest,
lLemma 2,1. Let the initial game position p, == {ty, &, (5)} be such that
r (zy (s), Wy) = 0. 1f the system of sets W,, ¢, <Z ¢ <O be strongly u-stable
[6], then the strategy {/¢ extremal to it satisfies the condition

rx, Isl, Wy =0, fo <2 b= ) (2.3)
where z [t} is any motion z [¢, p,, U®, V¢l
Proof, Letthe system of sets Wy, to <t <, be strongly u-stable, and let
r(xo (s}, W,) = 0. Let 2 [¢] be an arbitrary motion from the collection {z [t, po,U*, V', ]}
By the definition of this motion there exists a sequence of functions
{x [t]A’} {z {t, po, US, VT]A)_} (et} — 0,

which converges uniformly to | ¢} on [¢s, 1) ].

The validity of relation (2. 3) is clearly established once we have shown that whatever
the positive number #o, the segment z; [sly. of any function 7 [¢],; with a sufficiently
large number ; lies in the &-neighborhood Wﬁ" of the set W, for any ¢t & (to, 0 ]-

To this end we choose from the sequence {z [t]Aj} in arbitrary fashion a function
r [t], and construct along it the estimate of the quantity &, {7,,,] in terms of the quan-
tities e, [1;] and 8. Here and below e, [t] == r (z [t],, W))

let z (7;)4 be an element of the set Z (z, 101,) which for ¢ = 1; defines in accordance
with (2. 2) the control u, [t} corresponding to the extrernal strategy U¢. Without limi[ing

generality we assume that the section {J(’) {M,} of the minimizing sequence {r SO
which generates the vector z (T}, converges to z (T;)5- From (2.2) we have
(@ (01, 2 () ) M(r, ©) <Bi(k)  (wEP) (2.4)
Here !

Ni(ry, u) = fi(1y, = 1 (T4 o) — 1 (T3, z; [s]as w)o B1(k) =0 dor k-
i :
Let us consider the posmon p (/L, i) = {T: :rf ' ()a}- By virtue of the strong -
stability of the system of sets W, ¢, sé; t =0, among the motions

2 [tla = z [, p (k, 1), Up, 17,1
there exists a motion with the property
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20 (s E Wy, (2.5)

Here the strategy V,, is generated by the function
v () = v [0l =2, T<<I<Ty
which satisfies the following condition for any v € Qs
(-, 10]a — ’(T ) Vo (T V) < (2.6)
No(t;,0) = fa (T, 2, 5], v) — fa (T z%{su, v,)

and therefore the following condition (for any & ¢ Q):

(e, 101A — 28(0)a) Ny (T;, v) < Bo () @.7
Ba(k)~—>0 as k- oo

By the definition of the quantity ¢, [¢] with allowance for (2. 5) we have the estimate

. o k \
EalTul <2, [s]a ‘lfd[ Ial (2.8)

We note, furthermore, that the segments x_ i1 [51as x@ 1{ 514 of the trajectories » {#],.
A {1, can be expressed as follows (we assume that T; i —7;<T)

11.1 4 8
zo, Bla=a Olb ) o n Ly ) e, =<0
xti?l {S}A == x-‘i [S-}“ &ill ~T< S<~ai {3'(;)
Ti’f}+s
2 [sla =2l 0 + 3 @ [ e, 20 [ 1 ve()yde
T
—QE<S<0
{k - - .
11111[313 == z(‘.;,-) (s 4, . TTSSKY (=T, 1)

Here ¢{* [t], ¢, [¢] are summable functions which satisfy the following inclusions
for almost all t & [t 1;,):

(}‘} tle F (1, -‘C ‘S]A)» g, [t} € Fy (o x; [s]y)

By virtue of the definitions of the motions « [¢, py, U, V¢l, « [t, po, Uy, V,} and rela-
tions (2. 9), we obtain from (2. 8):

alTip] Cmax( max jz, [s], — 2 (5), |
2z

— —a;
J:l."f‘); 0 ! z (014 — zﬁ? Oy + J1() -+ T2 () b (2.10)
Here
Tily+s
J1(5) = \ {fI(I,x[]A,u)—(P(“[}}dt
RERE

Ia{s) = Q (@101 — fo (s P[4, vo()dt

Recalling the continuity of the sets F; (¢, z (s)) with respect to ¢, r (s) and Lipschitz'
condition (1. 3), we find that
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Tl oS
Tl =9y by -\ o (2.41)
i

P& c0 W, (v, njve Y. 3

I IS Lieglsls — 2 [s)a e (m=1, 2)
where || gm || — 0 as a; — 0 uniformly in ©; &€ [to, 9 ].
We shall now show that whatever the positive number B, all the functions z [t],; with
a sufficiently large number j satisfy the inequality
e [1] < Bexp [3L (2 — to)] (2.12)
for all ¢ &[t0, 0] !
In fact, assuming that the opposite statement holds, we infer that there exists a number
Bo such that for any number j, there exists a number j 2> jo and an instant ¢, () € [t0, 0 ]
for which inequality (2. 12) is violated for p == f,. By the condition of the theorem, at
the initial instant ¢t = #o for any j we have €, [t] = 0. Let us assume that at the points
Ty condition (2,12) for the functions z [¢], is first violated for ¢, (j) = v;,, = 7., (/) ,

4
EA] [Ti+1] > B“ exp [3L (r'i—}-l — {0)] (113)
Then for ¢t = 1; == T; (/) for the same functions we have
ex, 171 <Boexp [3L (r; — 10)] 2.44)
7

Let us choose a positive number B, < Po. For functions z [¢],  which satisfy conditions
(2.13),(2.14) we have one of two cases: !
Case 1, For any B, there exists a number j (,) such that
ea I <Br (2.15)
for / = j (Bi).. ‘
Case 2, There exists a number f; such that for any number j, there exists a num-
ber j > j, such that ey (12 B (2.16)
J
In Case 1 expression (2,11) implies the estimate
®a; [T I SKB-+00), 0G)—0 as |— ) (2.17)
For a sufficiently small f, and large / inequality (2,17) contradicts condition (2,13).
Let us consider Case 2, If for all functions z [¢] a, with a sufficiently large number ;
we have the inequality [ z., [O]Aj —z (Ti)Aju <a (2.18)
where atis an arbitrarily small positive number, then, choosing a sufficiently large % ,
we obtain the following estimate for these functions from relation (2.10):
~8Aj [TH‘J < Iri [S]AW. - xq(;’::) (S)Aj i (2.19)
This estimate implies the inequality
ta; [T S ®a; [7] (2.20)
If among the functions z [t], for which Case 2 holds there are functions with arbitra-
rily large numbers ; (at a certain positive a) such that
o, (015, — =)y 1 (2.21)
then, substituting (2, 11) into (2, 10), choosing a sufficiently large  , and recalling (2. 4),
(2.7), we obtain the relation
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ea; 1T SA+ 2L 2, [s15, — 200 (0)a e + 0 (@) (2.22)

Here o (a;) has a higher order of smallness than @; uniformly in k and 7; € [t, 0] .

This implies the estimate .

P e, [Tl SU+2L8)) 8y []+0(6)) (2.23)
810(6)—0 as j—oc (uniformly in 7, € [fo, 8])

Relations (2, 20), (2, 21) clearly contradict the collection of inequalities (2,13), (2, 14).
Thus, inequality (2.12) has been proved, This implies that all functions z [¢] A, with
a sufficiently large j satisfy the condition

a;ll1Se0, B (2.24)

where e is an arbitrary and arbitrarily small positive number, From (2,24) and the
definition of the motion z [t] = =z (¢, p,, U, V4] we infer relation (2, 3).

The following statement also follows directly from the above reasoning,

Lemma 2,2, Leta system of strongly u-stable sets W,, ¢, << t <C ¥ be specified
in the interval [¢,, O] . The strategy U® extremal to this system of sets has the follow-
ing property : whatever the positive number &, there exists a positive number & = & (8)
such that the following inequality is fulfilled for all motions z [t] = z (¢, p,, U® V7l
of system (1.1):
r(z [sl, W) <e, Lh<t<?®
provided the initial game position p, = {¢,, x, (s)} satisfies the inclusion

1‘0 (S) E I/Vtoa.
Here W,* is the a-neighborhood in Cj-,0] of the set W, i.e, the collection of
elements x (s) & C[_-,o; of the form

() =y +z(), yEHEW, |[z@)L<a

Note 2,1, The extremal second-player strategy V° has properties analogous to
those of U®. Specifically, the following statements hold,

Lemma 2.3, Let the initial game position po = {ty, Z, (s)} be such that
r(z, (s), W) = 0. If the system of sets W,, ¢, << ¢t <C & is strongly »-stable (see
[61), then the strategy V® extremal to it satisfies the condition

rz s, W) =0,  a<t<e

where z [¢] is any motion z [t, py, Ur, V°] (see [6]).

Lemma 2,4, Let the system of sets Wy, o <<t O be strongly »-stable, For
any positive number € there exists a positive number @ = a (&) such that the follow-
ing inequality holds for all motions g [t] =z [¢, p.y Up, V¢] of system (1.1):

rz[s], W) <le, t,<{t<(®

provided the initial game position p, = {t,, z, (s)} satisfies the inclusion
z, (5) = Ws,

Now let us consider the problem of encounter of system (1, 1) with the target M by
the instant <},

The following statement is valid,

Theorem 2,2. Let the initial game position p, = {£,, Z, (s)} be such that
r(zy (s), Wy) = 0. If the system of sets W,, £, <t < O is u-stable, and if
M D W, then the strategy 7¢ extremal to this system guarantees encounter of the
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motions z [¢, p,, {7, Vp] of system (1,1) with the target M by the instant .
Proof, Asbefore,let x {¢t] be an arbitrary motion from the collection {z [t, po, I'*
Vyl}, and let §x [t]Ai} be the sequence of functions « [t], == = [t, po, U4 V514 To prove
the statement of the theorem (see Definition 1,1) we need merely to verify that all the

functions z {f} A with a sufficiently large number j satisfy the inequality

nlin1@<z<'3 i (x{ti“&i’ My <& 2.25)
where ¢ is an arbitrarily small positive number,
Assuming the opposite, we find that there exists a positive number e such that for any
nuimnber j, there exists a number ; > jo for which
L R [t]Aj' M) > ey (2.26)

Let us consider the subsequence of functions z [t} a; each of whose terms satisfies con-
dition (2,26). We denote this subsqquence by {z {t]5} as before., We now denote the
ithnode 7; (i = 0, 1, ., ..) of the decomposition of A; by the symbol 1; [/]. As above,

let y :
ey =12

be a minimizing sequence for (2, 1). where
x (S) = il"fi[jl [S}A}-

Here the 0=-section of this sequence | “T?ijl {)} converges toz {v; I/]) A; (see Sect. 2
i

above), let ! ) i 3 . L )
AT 2B plkoT), Uy, Voo p k= {711l xii;:,](s)}
where the function vy satisfies (2, 7) for A = A;, and the motion (0 has the property
(translator’s note : there is obviously an omission in the original text at this point),
The following inclusion is fulfilled: - ..
x:i‘kl[}][x, Ti[/“bw‘-i;-xm (2.27y
or the condition 0o _
Uy wlilled {2.28)
holds for at leastone ¢ -~ ¢ () &€ Iv; lj), 7y, U]
Such a motion exists by virtue of the inclusion

) sy e TV
TLin e W)

and by virtue of the definition of the v- stability of the system of sets W, ¢, < ¢ @
(see [6]).
Two cases are possible for the functions = MA; from {= [t], }:
Case 1, Either there exists a number 7, such that for any / » j, and any 1, /]
there exists a number #, such that inclusion (2, 27) holds for any motion A
with & 2= ks
Case 2, Or for any number ;* there exists a number ; 2= j* and a node T, [/}
such that the collection {x®) {r, ., [f]], ¥ =~ 1, 2, . . .} contains motions with arbitrar-
ily large numbers % for which condition (2.28) holds, But then choosing (if necessary)
a subsequence from {f,fim{s)}, we can clearly assume that condition (2.28) for 29 gy
T, [/1] holds for all sufficiently large 7.
Let Case 1 hold, Then (see the proof of Lemma 2.1) estimate (2, 12) holds for the
functions x [t} Aje Making use of this estimate and recalling the inclusion W, < A
and the inequality -p (« [¢],, M) < ¢, [¢], we find that for sufficiently large ; we have
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p (z[© ]Aj’ M) < &0, which contradicts (2, 26),

Now let us consider Case 2, Without limiting generality, we assume that [z, [/],
Tnay 17]) is the first half-interval for the function z {t] ay where condition (2. 28) holds.
It can be verified directly that Case 2 implies the following estimate for the functions

? Mty Pl May M) <ea 17, 11+ 00) (2.29)

0()— 0as §— oo (uniformly in 7; € [t,81).

Next, arguments similar to those used in proving Lemma 2,1 can be adduced to show
that every function z |1}, from Case 2 which has a sufficiently large number ; satisfies
inequality (2.12) (where g is an arbitrarily small positive number) in [¢,, t,, |j] » But
then (2,29) and (2.12) (for ¢ = 1, {/]) imply that for sufficiently large ; we have the
relation p (= [¢} a; M) < &, which also contradicts condition (2,26), The theorem has
been proved,

Note 2,2. Theorems 2.1 and 2,2 clearly remain valid if the set M = M (¢)
depends continuously on ¢. In this case the condition Wy, < M in the statements of
the theorems must be replaced by the inclusion Wy < M (9).

Note 2.3, In connection with Theorems 2,1 and 2, 2 there arises the question of
the existence of a system of sets W, ¢, <C t <C ¥, havipg the required stability pro-
perties, This matter is discussed in [6], where the sufficient conditions of strong u- stabi-
lity of program absorption of the target M by system (1,1) are indicated, This paper
also states (without proof) that the system of positional absorption sets (see [6]) has the
property of r-stability, This is particularly important (in connection with Theorem 2, 2)
in solving the game problem on the minimax (maximin) of the time to encounter of
system (1,1) with the target M (see {2]).

The author is grateful to N, N, Krasovskii for his interest and valuable suggestions,
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